Product Specification
PE43503
Page 6 of 11
?008-2009 Peregrine Semiconductor Corp. All rights reserved.
Document No. 70-0252-05  UltraCMOS" RFIC Solutions
Programming Options
Parallel/Serial Selection
Either a parallel or serial interface can be used to
control the PE43503. The P/S bit provides this
selection, with P/S=LOW selecting the parallel
interface and P/S=HIGH selecting the serial
interface.
 
Parallel Mode Interface
The parallel interface consists of five CMOS-
compatible control lines that select the desired
attenuation state, as shown in Table 7.
 
The parallel interface timing requirements are
defined by Fig. 16 (Parallel Interface Timing
Diagram), Table 11 (Parallel Interface AC
Characteristics), and switching speed (Table 1).
 
For latched-parallel programming the Latch Enable
(LE) should be held LOW while changing attenuation
state control values, then pulse LE HIGH to LOW
(per Fig. 16) to latch new attenuation state into
device.
 
For direct parallel programming, the Latch Enable
(LE) line should be pulled HIGH. Changing
attenuation state control values will change device
state to new attenuation. Direct Mode is ideal for
manual control of the device (using hardwire,
switches, or jumpers).  
 
Serial Interface
The serial interface is a 8-bit serial-in, parallel-out
shift register buffered by a transparent latch. The 8-
bits make up the Attenuation Word that controls the
DSA. Fig. 15 illustrates a example timing diagram for
programming a state. When the DSA is used in
serial mode, ground all parallel control pins (pins 19-
23).
 
The serial-interface is controlled using three CMOS-
compatible signals: Serial-In (SI), Clock (CLK), and
Latch Enable (LE). The SI and CLK inputs allow
data to be serially entered into the shift register.
Serial data is clocked in LSB first.
 
The shift register must be loaded while LE is held
LOW to prevent the attenuator value from changing
as data is entered. The LE input should then be
toggled HIGH and brought LOW again, latching the
new data into the DSA. Attenuation Word truth table
is listed in Table 8. A programming example of the
serial register is illustrated in Table 9. The serial
timing diagram is illustrated in Fig. 15.  It is required
that all parallel pins be grounded when the DSA is
used in serial mode. 
Power-up Control Settings
The PE43503 will always initialize to the maximum
attenuation setting (31 dB) on power-up for both the
serial and latched-parallel modes of operation and
will remain in this setting until the user latches in the
next programming word. In direct-parallel mode, the
DSA can be preset to any state within the 31 dB
range by pre-setting the parallel control pins prior to
power-up. In this mode, there is a 400-祍 delay
between the time the DSA is powered-up to the time
the desired state is set. During this power-up delay,
the device attenuates to the maximum attenuation
setting (31 dB) before defaulting to the user defined
state. If the control pins are left floating in this mode
during power-up, the device will default to the
minimum attenuation setting (insertion loss state).
 
Dynamic operation between serial and parallel
programming modes is possible.
 
If the DSA powers up in serial mode (P/S = HIGH),
all the parallel control inputs DI[6:2] must be set to
logic low. Prior to toggling to parallel mode, the DSA
must be programmed serially to ensure D[7] is set to 
logic low.
 
If the DSA powers up in either latched or direct-
parallel mode, all parallel pins DI[6:2] must be set to
logic low prior to toggling to serial mode (P
/S
= HIGH), and held low until the DSA has been
programmed serially to ensure bit D[7] is set to logic
low.
 
The sequencing is only required once on power-
up. Once completed, the DSA may be toggled
between serial and parallel programming modes at
will.
-
相关PDF资料
PIC12LF1840T48AT-I/ST MCU 8BIT 7KB FLASH 14TSSOP
PPG101A1RD DETECTOR RTD TF 100 OHM +/-0.06%
PPG101B1RD DETECTOR RTD TF 100 OHM +/-0.12%
PPG101C1RD DETECTOR RTD TF 100 OHM +/-0.24%
PPG102A1RD DETECTOR RTD TF 1K OHM +/-0.06%
PPG102B1RD DETECTOR RTD TF 1K OHM +/-0.12%
PPG102C1RD DETECTOR RTD TF 1K OHM +/-0.24%
PPG501A1RD DETECTOR RTD TF 500 OHM +/-0.06%
相关代理商/技术参数
PE4351 制造商:PASTERNACK 制造商全称:Pasternack Enterprises, Inc. 功能描述:BNC Male Connector Crimp/Solder Attachment For RG214, RG9, RG225, RG393
PE4352 制造商:PASTERNACK 制造商全称:Pasternack Enterprises, Inc. 功能描述:GR874 Sexless Connector Crimp/Solder Attachment For RG214, RG9, RG225, RG393
PE4353 制造商:PASTERNACK 制造商全称:Pasternack Enterprises, Inc. 功能描述:SMA FEMALE BULKHEAD SOLDER ATTACHMENT FOR RG55 RG58 RG142 RG223 & RG400
PE4354 制造商:PASTERNACK 制造商全称:Pasternack Enterprises, Inc. 功能描述:SMA Male Bulkhead Connector Solder Attachment Solder Cup Terminal, .235 inch D Hole
PE4356 制造商:PASTERNACK 制造商全称:Pasternack Enterprises, Inc. 功能描述:SMB PLUG SOLDER ATTACHMENT FOR RG405 PE-SR405AL & PE-SR405FL
PE4360 制造商:PASTERNACK 制造商全称:Pasternack Enterprises, Inc. 功能描述:SMB JACK SOLDER/CLAMP ATTACHMENT FOR RG405 PE-SR405AL &PE-SR405FL
PE43601 制造商:PEREGRINE 制造商全称:PEREGRINE 功能描述:RF Digital Attenuator 6-bit, 15.75dB, DC-6.0 GHz
PE43601MLI-Z 功能描述:IC RF DSA 6BIT 50 OHM 32QFN RoHS:是 类别:RF/IF 和 RFID >> 衰减器 系列:UltraCMOS™, HaRP™ 标准包装:1 系列:- 衰减值:- 容差:±1% 频率范围:0 ~ 500MHz 功率(瓦特):2W 阻抗:93 欧姆 封装/外壳:BNC 单排模块